When I was 12 years old, my parents dropped me off at an eight-week summer camp in Michigan. I had loved my previous camp, but it had closed; the Michigan camp was new to me. I hated it, and after the first day, called my mother asking to come home to Cleveland. I didn't want to stay another minute. But my parents had already paid for the camp; and besides that, the new camp was to make an athlete of me—the previous one, an aesthete. So my mother entreated my older cousin, Donald, to help:

Go get Arthur and talk some sense into him.\footnote{I don't remember exactly what he said to me, but I do remember that hot summer afternoon. Donald made the roundtrip to fetch and bring me back to his laboratory, which was in a dingy, dusty basement. I'd never been on a college campus before. From the lab fridge, Donald grabbed a beer for himself and a Coke for me. He shook the beer, and when he opened it, foam sprayed into the air. We could see newly bathed dust in the air, backlit from the sunbeam pouring through a transom window. I like to think of that playful instance as the moment when ideas began percolating for Donald's invention, less than two years later, of the bubble chamber. His instrument allowed physicists for the first time to track and visualize subatomic particles.}

My mom picked the right person to set me straight. Donald was like a big brother to me. For some time, we shared a two-family house in Cleveland; he was my first science "teacher." How could I not look up to him? Besides being a brilliant physicist (who later switched to molecular biology—like all good physicists of that time!—and then to neurobiology), he was a talented musician (he once played viola with the Cleveland Orchestra). He was bold (drove a Harley, was an accomplished scuba diver, and cofounded the first biotech company). And he was a wonderfully gracious and warm person. The qualities Donald embodied are what I like to call "Levine's six unlinked genes for success": intelligence, creativity, fire in the belly, social adroitness, curiosity, and the ethic of hard work.

These are qualities we look for in student applicants to the medical school, and what I hope to see in department chairs, in others holding positions of leadership, and especially in the best clinicians and scientists. The "genes" (each is undoubtedly a constellation of many genomic influences) I speak of are unlinked, because you can have one without the other, of course. Yet for great success in medicine, science, and most walks of life, they all come into play. For instance, you may be brilliant, creative, curious, passionate, and hardworking, but if you can't collaborate, you won't get far.

Still, even when junior faculty have these raw ingredients for success, they usually need some help. We recruit promising young investigators and academic physicians. However, they've probably not been trained in "grantsmanship," i.e., how to write a successful application that will bring in the very substantial monies needed to run a laboratory. Or in how to recruit patients who are apprehensive about enrolling in a clinical trial. Or to manage a staff. Or to ensure that institutional policies for research compliance are followed. The skills needed for academic medicine are a lot like those needed for running a business, as Mark Gladwin, our chair of medicine, suggests in an upcoming \textit{Pitt Med} story.

I am indebted to Pitt’s Darlene Zellers and Ora Weisz, who have created a novel three-year-long series to help young academic physicians and scientists envision and build paths to success, including getting a handle on the quotidian challenges junior faculty are likely to face. The six unlinked genes may be the ideal genotype, but Darlene and Ora’s course comprises the value-added phenotype. (I did stay in the camp, but I still only aspire to be an athlete.)

\begin{flushright}
Arthur S. Levine, MD
Senior Vice Chancellor for the Health Sciences
John and Gertrude Petersen Dean, School of Medicine
\end{flushright}